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The pair contact process with diffusion �PCPD� is studied with a standard Monte Carlo approach and with
simulations at fixed densities. A standard analysis of the simulation results, based on the particle densities or on
the pair densities, yields inconsistent estimates for the critical exponents. However, if a well-chosen linear
combination of the particle and pair densities is used, leading corrections can be suppressed, and consistent
estimates for the independent critical exponents �=0.16�2�, �=0.28�2�, and z=1.58 are obtained. Since these
estimates are also consistent with their values in directed percolation �DP�, we conclude that the PCPD falls in
the same universality class as DP.
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I. INTRODUCTION

In the fermionic one-dimensional pair contact process
with diffusion �PCPD�, the model studied here, point par-
ticles can diffuse on a line, and reactions can occur when two
particles end up next to each other. The particles can then
both be annihilated, or if there is a free site next to the pair,
a new particle can be created. The reactions present in the
PCPD model are

�AA0 → AAA

0AA → AAA
� each with rate

�1 − p��1 − d�
2

,

AA → 00 with rate p�1 − d� ,

A0 ↔ 0A with rate d , �1�

with 0�d�1 and 0� p�1.
As for other systems of this kind, the scaling relations that

are expected to hold for the density � and correlation length
� are

�p=pc
� t−� �� = 0� ,

�t→� � �� �� 	 0� ,

� � ��−
� �� � 0� ,

t1/z �� = 0� ,
� �2�

in which �= pc− p is the distance to the critical point. The
critical exponents in these scaling relations define the univer-
sality class a system belongs to �1,2�. Two firmly established
universality classes so far for systems of this kind are the
directed percolation �DP� and parity conserving classes.

Since the introduction of the PCPD a decade ago �3�, or at
least a model closely resembling it, it has attracted much
attention. The main reason for this attention is that, while its
symmetries and conservation laws are seemingly identical to
directed percolation, numerical estimates of its critical expo-
nents seem to place it in a different universality class. It has
been conjectured before by Grassberger �4� and Janssen �5�
that critical points with a unique absorbing state and a single
order parameter will fall into the DP universality class, mak-

ing this a likely candidate for the PCPD as well. However,
the fact that the PCPD absorbing state is not unique makes
this less certain, and it has been suggested by earlier studies
that it might not be possible to describe the PCPD with a
single order parameter �6,7�. Table I shows values reported
for the critical exponents of the PCPD from previous studies,
as well as the accurately known values for these exponents in
the DP universality class. So far, while it is obvious much
research has been done on this subject, there is still a certain
amount of disagreement in the results. Generally, the differ-
ences between the measured exponents and the values for
directed percolation have been significant. It has been ar-
gued, however, that the discrepancy in � between the PCPD
and DP is due to severe finite-size and finite-time effects
�16�, and recent ultralong simulations �18� show a clear trend
of � toward its DP value.

Other recent studies have looked at field theory ap-
proaches for the PCPD �6�, and looked at a bosonic version
of the model, where multiple particles can exist in one spot
�15,18�. Another study �21� has investigated the structure and
behavior of clusters in the PCPD, to clarify the slow ap-
proach of the PCPD to its asymptotic scaling regime. Inves-
tigation of the crossover from the PCPD to DP �22� has
yielded evidence indicating non-DP scaling.

At this point, it is still unclear what universality class the
PCPD does belong to. Most studies so far conclude that the
PCPD might belong to a new univerality class �16,22�, or
even that it might belong to several ones based on the value
of the parameter d �9,13–15�. On the other hand, in a recent
study by Hinrichsen �19�, the critical exponent � was shown
to display a significant drift toward the DP value, providing
evidence for a single universality class. However, this ten-
dency has not been clearly shown for the other two expo-
nents so far.

A previous study �Ref. �17�� has provided numerical evi-
dence that, at the critical point, the ratio between the pair and
particle densities tends to a nonzero, finite value when the
simulation time tends to infinity. Also the high-quality data
of Ref. �19� confirms the convergence to a nonzero ratio. A
visual inspection of the system shows big clusters, separated
by increasingly large empty �or near-empty� regions. Since
these clusters tend to have a finite density in particles as well
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as in pairs, the convergence of their ratio to a nonzero value
is not unexpected.

Based on this convergence of the ratio of particles and
pairs, we will show in this paper that the PCPD has strong
correction terms in its scaling relations when it has not yet
reached the thermodynamical limit. These correction terms
will distort any direct measurements of the exponent. The
correction terms for these quantities, however, do not turn
out to be exactly the same. We will show that if both the
particle and the pair densities are combined in the analysis,
these corrections can in some cases be suppressed, allowing
a more accurate result for the exponents. The resulting esti-
mates for the critical exponents of the PCPD model are con-
sistent with the DP universality class.

II. SIMULATION APPROACH

In our analysis, we use both normal Monte Carlo simula-
tions and simulations at constant density. For the former, we

followed the usual method of simulating a system of sites
that can each contain a particle, using the same multispin
coding program as used by Barkema and Carlon in an earlier
study �17�.

It is very hard to get accurate data at low densities �below
10%� with standard simulations, due to time constraints and
the possibility of the system reaching an absorbing state be-
cause of its finite size. Thus, to get more accurate data at
lower densities, we also performed simulations of the PCPD
at constant density. This was done by having two possible
reactions for the system: each step consists of either the usual
diffusion, or a combination of one annihilation of a pair of
particles and the creation of two new ones. It has been shown
�23–25� that this procedure, after thermalization, produces
configurations that are indistinguishable from those obtained
with standard simulations �with a fixed value for p� pc� after
the same density has been reached.

To correctly update the rates of the reactions in this sys-
tem, the number of possible places where these reactions can
take place is required. Counting these at each time step

TABLE I. Reported values for the critical exponents of the PCPD �8�. In some of the studies, a modified
model was used, changing the definition of the parameters; these studies are marked with an asterisk in the
d column.

Study Year d � � z � /
�

Ódor �9� 2000 0.1 0.275�4� 0.58�1�
0.5 0.21�1� 0.40�2�
0.9 0.20�1� 0.39�2�

Carlon, Henkel, and Schollwöck �10� 2001 0.1 1.87�3� 0.50�3�
0.5 1.70�3� 0.48�3�
0.8 1.60�5� 0.51�3�

Hinrichsen �11� 2001 0.1 0.25 �0.67 1.83�5� 0.50�3�
Park, Hinrichsen, and Kim �12� 2001 * 0.236�10� 0.50�5� 1.80�2�
Park and Kim �13� 2002 * 0.241�5� 0.496�22� 1.80�10�

* 0.242�5� 0.519�24� 1.78�5�
Dickman and de Menezes �14� 2002 0.1 0.249�5� 0.546�6� 2.04�4� 0.503�6�

0.5 0.236�3� 0.468�2� 1.86�2� 0.430�2�
0.85 0.234�5� 0.454�2� 1.77�2� 0.412�2�

Ódor �15� 2003 0.1 0.206�7� 0.407�7� 1.95�1� 0.49�2�
0.5 0.206�7� 0.402�8� 1.84�1� 0.41�2�
0.7 0.214�5� 0.39�1� 1.75�1� 0.38�2�

Kockelkoren and Chaté �16� 2003 * 0.200�5� 0.37�2� 1.70�5�
Barkema and Carlon �17� 2003 0.1 0.17

0.2 0.17 1.70�1� 0.28�4�
0.5 0.17�1� 0.27�4�
0.9 0.17 1.61�3�

Noh and Park �18� 2004 0.1 0.27�4� 0.65�12� 1.8�2� 0.50�5�
Park and Park �7� 2005 1 /3 0.20�1�
Hinrichsen �19� 2006 * �0.185 �0.34 �1.65

De Oliveira & Dickman �20� 2006 0.1 2.08�15� 0.505�10�
0.5 2.04�5� 0.385�11�
0.85 1.88�12� 0.386�5�

Kwon and Kim �21� 2007 * 1.61�1�
Directed percolation 0.1595 0.2765 1.5807 0.2521
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would take too much time, so instead of keeping track of
sites, and whether or not they are occupied, only the existing
particles and the distance to their neighbors are stored during
the simulation. Based on the number of direct neighbors of a
particle �0, 1, or 2�, the information is kept in one of three
lists. Particles are moved from one list to another when a
reaction causes them to gain or lose a neighbor. This method
allows us to track the number of particles with zero, one, and
two neighbors at every step of the simulation. In addition, it
enables us to pick randomly a particle with a certain number
of neighbors, making sure that we can always perform a
chosen reaction. We can just compute the probabilities for
each reaction in a given configuration, choose a reaction
based on that, and pick a site to perform it. This prevents the
rejected reactions normally seen in Monte Carlo simulations,
allowing us to speed up the simulations significantly.

The probability of performing a reaction in a general
PCPD system simply equals the rate �as in Eq. �1�� multi-
plied by the number of possible places where the reaction
can be performed, yielding

�AA0 → AAA

0AA → AAA
�, Pproc =

�1 − p��1 − d�n1

2
,

AA → 00, Panni = p�1 − d��n1/2 + n2� ,

A0 ↔ 0A, Pdiff = d�n0 + n1/2� . �3�

Here, ni is the number of particles with i direct neighbors,
and the probability for each reaction is not normalized yet.
Since we want the probability for procreation to be twice as
large as that for annihilation to keep a constant number of
particles, we can compute the value of p that would achieve
this from the values of ni at each simulation step. Knowing
this value at each step allows us to compute the probabilities
for each reaction in the model with constant density using

peff =
n1

3n1 + 4n2
,

P2proc+anni = peff�1 − d��n1/2 + n2� ,

Pdiff = 3d�n0 + n1/2� . �4�

Only two reactions exist now: diffusion, and the combination
of two particle creations and one pair annihilation. Since the
latter reaction is actually a combination of three separate
events, the probability for diffusion is multiplied by a factor
of 3 to compensate for this. The computed value for peff can
be monitored over the course of the simulation and averaged
to find the value of p corresponding to the fixed density of
the system.

Of course, quantities depending on time cannot be mea-
sured from these simulations at constant density. However,
these simulations are very useful for determining the expo-
nent �, since it allows us to explore the relation between �
and p for low densities much faster and without the risk that
the system reaches an absorbing state by fluctuations.

Apart from the usual density, the pair density �* was also
measured in both normal and constant-density simulations.

This density is simply the number of pairs of directly adja-
cent particles, divided by the length of the system. Since the
ratio between � and �* approaches a nonzero constant in the
thermodynamic limit, as shown by Barkema and Carlon �17�,
�* should obey the same power laws as �, with the same
exponents. Finite-size or finite-time effects might, however,
not be exactly the same for � and �*. Therefore, if we find
different critical exponents for the particle density and pair
density, we know that the method of analysis used is incor-
rect.

III. DIRECT COMPUTATION OF CRITICAL EXPONENTS

A direct analysis of the simulation data from all per-
formed simulations is fairly straightforward, and has already
been shown before to give rise to great inaccuracies in its
results. In this section we will give a quick overview of this
direct analysis, with particular attention for the differences
between the results for the particle density � and pair density
�*. A first estimate of the critical exponent � is obtained by
taking the logarithm of both the density and time in a simu-
lation close to the critical point, and fitting a straight line
through the data. The simulations used to determine � were
run on a system with L=100 000, for about 3�106 time
steps. For d=0.5, this leads to �=0.19, as shown in Fig. 1. A
slightly higher value for � is found, however, if this analysis
is performed on the pair density instead ��*=0.20�, and it is
visible that the double-logarithmic curve is not entirely
straight. As was already shown before �17,19�, this curving
tendency can very well be extrapolated to �DP.

The value of � can be determined by performing simula-
tions at noncritical values of p, where the system reaches its
steady state. Here, we used simulations at constant density
for this. The exponent � can be extracted from a logarithmic
plot of the density versus p− pc. Figure 2 shows such a plot.
At higher densities, this yields values for � that are consis-
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FIG. 1. Particle density � and pair density �* as a function of
time, for PCPD simulations at d=0.5, p=0.1524, and L=100 000,
averaged over 64 simulations. The straight line is a fit to determine
� ignoring correction terms. The top curve shows the density, with
�direct=0.19. The bottom curve shows the pair density, with �direct

=0.20.
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tent with earlier reported measurements, significantly higher
than �DP. However, it is clear that this fit does not hold up
for the lower densities, which can be reached in the constant-
density simulations. In addition, for the region with higher
densities, the slopes for the particle and the pair density are
clearly different, showing that an analysis consisting of a
simple linear fit cannot be trusted.

For the calculation of the critical exponent z=
� /
� we
examine finite-size effects on a system at the critical value of
p. If the system size L is small, these effects will cause the
density to start decaying exponentially once the correlation
length �� t1/z approaches the system size. Since the particle
and pair densities are tied closely together, they will collapse
at the same time. After sufficient time, the density will then
decay as

� � exp�− b�t/Lz�� �5�

⇔ln��� = a − b�t/Lz� . �6�

Using Eq. �6�, the exponent z can be obtained from simu-
lations in small systems of various sizes until past this point
of collapse, and the exponent z can be adjusted until data
collapse for the exponential regime. We simulated systems
for d=0.1, 0.5, and 0.9, with system sizes ranging from L
=200 to 5000 sites. For system sizes larger than this, the
collapse occurs at late times, and therefore at a very low
density. Apart from the very long simulation times, this poses
another problem. To have accurate data at that point, we
would have to know pc accurately enough such that its error
�pc obeys ��pc���. With the density dropping below 0.04
near the point of collapse for larger systems, �pc would have
to be smaller than 10−5 to avoid significant systematic errors.
Since our precision in pc is not that good, our range for the
system size is limited by this effect.

At the time the density starts collapsing, t�Lz. Since up
to this point, the density was following a power law, we

know that the density at this point will be �coll� t−��L−�z.
Using this, we can scale the data from our simulations to
obtain a data collapse, as shown in Fig. 3 for d=0.5. It turns
out that scaling the vertical axis works best with �z
=�DPzDP, though the optimal value for z in the horizontal
scaling again varies with d.

Table II shows the results for all exponents, for the three
values of d we investigated. The exponents all vary when the
diffusion parameter d changes, which, assuming the PCPD
falls into a single universality class, again points out there is
something wrong with such a direct analysis.

IV. ANALYSIS INCLUDING CORRECTIONS

Given the problems with the direct analysis of the critical
exponents � and �, we propose introducing correction terms
into our scaling laws. Both � and �* obey the power laws as
before, but with the DP values for the leading term in each
relation, and an added correction term with a higher expo-
nent. For the time dependence of the density, this yields

� = at−� + bt−�,

�* = a*t−� + b*t−�. �7�

While it is expected that the exponents for the two relations
are the same, the prefactors for the particle density can be

TABLE II. The results of the direct analysis of the critical ex-
ponents, ignoring correction terms.

d pc � �* � �* z

0.1 0.1111 0.22 0.24 0.48 0.60 1.83

0.5 0.1524 0.19 0.20 0.42 0.51 1.75

0.9 0.2333 0.19 0.20 0.34 0.39 1.64

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

-10 -9 -8 -7 -6 -5 -4 -3

ln
ρ,

ρ*

ln (pc-p)

FIG. 2. Particle density � and pair density �* as a function of
p− pc in constant-density simulations, with d=0.5 and L=100 000.
The data for the pair density are the lower set. The fits, using only
the points with higher densities, yield �direct=0.42 for the particle
density and �direct=0.51 for the pair density.
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FIG. 3. Data collapse to determine z, ignoring correction terms.
Each curve is the average over 3200 simulations, for d=0.5, p
=0.1524, and L=200 ���, 300 ���, 500 ���, 1000 ���, 2000 ���,
3000 ���, and 5000 ���. We find zdirect=1.75. Since the particle
density of the system will not always tend to 0 due to the possibility
of a single remaining particle, we include only the data on the pair
density.
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different from those for the pair density. This makes it pos-
sible to determine linear combinations of � and �* where one
of the two terms is suppressed, using

�� 	 � −
b

b*
�* = ct−�,

�� 	
a

a*
�* − � = c̃t−�. �8�

To determine all coefficients accurately, we will need both
exponents. The correction exponent � can be computed once
a value for a /a* has been found that turns ln �� into a linear
function of ln t, at least for low densities. As a starting esti-
mate for this ratio, an extrapolation of the ratio � /�* for �
→0 can be used. Figure 4 shows the plots used to determine
a /a* and calculate �.

With the exponent � known, and using the DP value for �,
it is now possible to fit both � and �* with a linear combi-
nation of t−� and t−�, to obtain the prefactors a ,b ,a* and b*.
These fits are shown for d=0.5 in Fig. 5. The consistency of
our fits can then be checked by determining � and � again
from a linear fit to logarithmic plots of the appropriate linear
combinations of � and �*. In addition, the assumption for
a /a* can be checked to make sure that it equals the ratio
between the values from the fit.

Going through this process for d=0.5, the final fit to de-
termine � from the computed ideal combination of � and �*

gives a value of 0.16�2�, as shown in Fig. 6, consistent with
�DP=0.1595. The figure also shows the effective exponent as
it changes during the simulation. The remaining curvature in
these graphs is sensitive to small changes in the estimation of
a /a*, even if those do not significantly affect the resulting
exponents. Therefore, this deviation from a straight line is
most likely caused by an inaccuracy in this estimation. The
differences between the estimated and calculated ratio a /a*

and between the two obtained values for � are well within
the error margins for those values. In Table III, the results for
the fit are shown also for other values of d. As seen in the
table, the exponent � seems to vary as d changes. It is likely,
however, that this is the effect of further correction expo-
nents, whose coefficients depend on d. Given the numerical
precision of our data, it would be too optimistic to claim that
our values for � are accurate. A fit of Eq. �7� with �
=0.1595 to the high-quality data of Ref. �19�, which runs up
to time t=108, yields correction exponents as low as �=0.3.
This shows that either the corrections to � are very strong, or
the leading finite-time corrections actually cancel out in ��,
causing us to measure the next correction exponent instead.

A similar process can be followed for determining �, us-
ing the constant-density simulations. Again, we used L
=100 000, with simulation times varying based on the relax-
ation time of the system. Our densities range from 0.05 to
0.4. For low densities, it can take up to 109 simulation steps
until the system no longer shows a systematic drift. The as-
sumed behavior of the densities is

� = a�pc − p�� + b�pc − p��,

�* = a*�pc − p�� + b*�pc − p��,

�� 	 � −
b

b*
�* = c�pc − p��,

�� 	
a

a*
�* − � = c̃�pc − p��. �9�

Of course, the values for the prefactors, as well as the cor-
rection exponent, will be different from those in Eqs. �7�.
However, the value for a /a* should still be the thermody-
namic limit of the ratio � /�*, and thus will be the same as in
our calculation of �.
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FIG. 4. Decay in time of linear combinations of the particle and
pair densities, plotted to find the combination that isolates the cor-
rection term. Here, ��=a /a*�*−�, with a /a*=2.41, 2.43, and 2.45
�from bottom to top�, at d=0.5 and p=0.1524. The top and bottom
lines are shifted up and down by 1 for clarity. The middle plot is the
straightest; from its slope we get the correction exponent �=0.63.
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FIG. 5. Time dependence of the particle density � �top� and pair
density �* �bottom� at d=0.5, p=0.1524, and L=100 000, averaged
over 64 simulations. The lines were obtained from a least-squares fit
of both t−� and the correction term t−� to the data, using �=�DP and
�=0.63.
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Plotting the linear combination of � and �* which sup-
presses the leading term, using the same ratio of a /a* as
before, we can determine the first correction exponent �.
With the exponents of the two leading terms known, we can
again fit these to the data to determine their prefactors, and
find the linear combination that will suppress the correction
term. The result of this is shown in Fig. 7. Again, the values
from the fit to cross-check a /a* and � show that these esti-
mates are consistent with the fit. Table IV shows the results
for different values of d. Again, the correction exponent var-
ies slightly as the diffusion parameter d changes, suggesting

additional corrections beyond the first. However, all data are
consistent with a �DP=0.2765.

To confirm that we are performing our simulations at the
critical point, we can calculate pc from these constant-
density simulations as well. With the same linear combina-
tion of the density and pair density as used for calculating �,
we again suppress the correction term. Since ����1/� is a
linear function of p, and equals 0 at p= pc, finding pc is a

TABLE III. Results of our analysis for �, if a correction term is
included. The �check column shows the value of the exponent �
obtained by using a and a* from the fit, to cross-check the values
obtained in Fig. 4.

d a /a* � a b a* b* � �check

0.1 2.56 0.531 0.41 3.60 0.16 2.44 0.16�2� 0.571

0.5 2.43 0.625 0.47 3.47 0.19 1.96 0.16�2� 0.633

0.9 4.19 0.858 0.37 27.0 0.089 9.31 0.16�2� 0.887
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FIG. 6. Fit to determine � from ��, the ideal linear combination
of the particle and pair densities that suppresses the correction term.
The slope of the fit yields �=0.16�1�, at �from the top graph to the
bottom� d=0.1 and p=0.1111, d=0.5 and p=0.1524, and d=0.9
and p=0.2333, with all data averaged over 64 simulations at each
diffusion rate. The insets show the effective exponent �eff

=� ln���� /� ln t as a function of ln t, with the horizontal line at �
=0.16.
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FIG. 7. Plots of the linear combination �� of the particle density
and pair density that suppresses correction terms in the calculation
of �, using constant-density simulations at d=0.1 �top�, 0.5
�middle�, and 0.9 �bottom�, at L=100 000. The slope of the line
gives �=0.29�3�, 0.28�2�, and 0.29�3�, from top to bottom, in
agreement with DP. The insets show how pc for each value of d was
checked using these simulations, by plotting the same ����1/� as a
function of p.
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matter of linear extrapolation, as shown in the insets in Fig.
7. The results are in agreement with the values for pc used
for all our simulations at the critical point, as seen in Table
IV.

Lastly, we turn to the exponent z. While the data collapse
in Fig. 3 is acceptable, we do find different values of zdirect at
d=0.1, 0.5, and 0.9. Since we have demonstrated that equal
values for the exponents � and � can be obtained for differ-
ent values of d by including correction terms, this encour-
ages us to try out a similar approach here.

As before, we add a correction term to the relevant equa-
tion, in this case the one for the density during the collapse,
and see how this fits with the DP exponents. The density will
now decay differently, following

�coll � exp�− bt�L−z + cL−��� , �10�

with b an unknown constant and � the correction exponent,
with prefactor c. Considering that one of the determining
factors of the system is diffusion, where the correlation
length grows as 
t, a correction exponent of �=2 is a rea-
sonable assumption. Sadly, with the range of data available it
is impossible to determine this exponent accurately. We can,
however, assume z=zDP and �=2, and show that this will
provide data collapses at least as acceptable as the ones with-
out a correction term. We use the same scaling as before,
though we include the corrections calculated in our analysis
for � in our vertical scaling:

�coll = �*�t = Lz� � L�z +
b*

a*
L�z, �11�

with �, a* and b* taken from Table III.
Note that there still is only one free parameter in our data

collapse after these assumptions have been made: instead of
varying the exponent z, modifying the prefactor c is now the
only way to make the data from different system sizes over-
lap, for both the particle density and the pair density. This
prefactor for the correction term can vary as d changes, how-
ever. By plotting this relation for different sizes, we can find
the value for c that causes a data collapse, as well as the
equivalents for the pair density. The ratio of the particle den-
sity and pair density varies very little in the regime we are
examining here, and the point of collapse is equal for both,
so we expect that b and b* are equal. Figure 8 shows the data
collapses for three values of d. While this does show that all
of our data can be seen as consistent with zDP, there is no
clear way to show that this interpretation is better than the
simpler approach, which yields varying exponents for differ-

ent values of d. However, it does seem more likely that, if
the other two exponents are independent of the diffusion rate,
the same should hold for z.

V. CONCLUSION

Monte Carlo simulations, both the usual approach with
constant rate p and a new approach at constant density, have
been used to analyze the critical behavior of the pair contact
process with diffusion. While many recent studies conclude
that this model does not belong to the directed percolation
universality class, we find that, if correction terms are in-
cluded in the power laws governing critical scaling, all of the
acquired simulation data are consistent with the exponents
from DP.

In our simulations, especially the calculations for � and �
offer convincing evidence that the DP values for these criti-
cal exponents are indeed accurate for the PCPD model. Since
the critical exponents for � and �* must be equal, any linear
combination of these must have the same exponents as well,
in the thermodynamical limit, except in the singular case
where the leading terms cancel out. The fact that there exists
a linear combination which follows a power law that is con-

TABLE IV. The results of our analysis for �, when a correction
term is included. The �check column shows the value of the exponent
� obtained by using a and a* from the fit, which allows us to
confirm our calculation of �.

d � a b a* b* � �check pc

0.1 1.058 0.62 43.1 0.24 26.5 0.29�3� 1.055 0.1111

0.5 1.056 0.70 16.4 0.29 10.5 0.28�2� 1.070 0.1524

0.9 1.270 0.43 17.0 0.10 7.77 0.29�3� 1.285 0.2333
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FIG. 8. Data collapses with z=zDP for d=0.1, p=0.1111 �top�,
d=0.5, p=0.1524 �middle�, and d=0.9, p=0.2333 �bottom�, at sys-
tem sizes L=200 ���, 300 ���, 500 ���, 1000 ���, 2000 ���, 3000
���, and 5000 ���. All data are averaged over 3200 runs. The
values for c used are c=20, 15, and 3, in order of increasing d.
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sistent with the DP exponent shows that the correct exponent
for the system can at least not be any larger than that. Our
analysis of z does not lend itself to an accurate calculation of
the exponent, but does also show that a correction term can
explain the deviation from the DP exponent. With all of our
simulation data consistent with DP for all three of the studied
exponents, and for all investigated diffusion rates, we con-

clude it is likely that the PCPD does belong to the directed
percolation universality class.
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